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Describing the diffusion of particles through crowded, confined environments with which they can interact
is of considerable biological and technological interest. Under conditions where the confinement dimensions
become comparable to the particle dimensions, steric interactions between particles, as well as particle-wall
interactions, will play a crucial role in determining transport properties. To elucidate the effects of these
interactions on particle transport, we consider the diffusion and binding of finite-size particles within a channel
whose diameter is comparable to the size of the particles. Using a simple lattice model of this process, we
calculate the steady-state current and density profiles of both bound and free particles in the channel. We show
that the system can exhibit qualitatively different behavior depending on the ratio of the channel width to the
particle size. We also perform simulations of this system and find excellent agreement with our analytic results.
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I. INTRODUCTION

Recent advances in technology and a burgeoning interest
in biological systems have generated a great deal of interest
in understanding particle transport in crowded environments.
There are many biological processes where the diffusion of
particles through the crowded environment of the cell is im-
portant. Examples of these include: The transport of material
through ion channels �1,2�, mitochondrial and bacterial por-
ins �3�, and nuclear pores �4�; and the diffusion of enzymes
and macromolecules through microtubules and microtubule
bundles �5,6�. In addition, cells themselves diffuse through
confined environments, such as the movement of red blood
cells and leukocytes through small blood vessels �7�. Finally,
the transport of organelles between cells has been shown to
occur through narrow “nanotubes” that connect the cells �8�.
In technology, microfluidic devices and techniques �9,10�
have immense potential for a variety of applications, includ-
ing miniature biological assays for diagnostics and basic re-
search �11,12�. Other applications where such considerations
would be important include diffusion through carbon nano-
tubes �13� and microporous materials such as zeolites
�2,14,15�, as well as the diffusion of colloidal particles
through narrow channels �16,17�.

To date, much of the theoretical effort on particle diffu-
sion in confined environments has focused on two extreme
limits. The first limit is the “single-file diffusion” case, where
the effects of confinement are so severe that steric interac-
tions between the particles prevent them from diffusing past
one another �2,18–21�. In many systems, however, steric in-
teractions are important, but the level of confinement is not
so extreme, allowing the diffusion of a small number of par-
ticles past one another. Attempts have been made to model
such systems using both continuum �22� and lattice-based
approaches �23–25�, but these studies address regimes close
to the single-file limit using either perturbative, quasi-single-
file models or two-file lattice models. In the opposite limit,
steric interactions between the particles are ignored, but

other effects of the confining environment are taken into ac-
count. For example, the friction between the particles and the
confining walls can lead to hinderance of diffusion �5�. Also,
the variation of the cross-sectional area of a channel has been
shown to lead to a generalized one-dimensional diffusion
equation known as the Fick-Jacobs equation �26–30�. There-
fore it is clear that understanding the general problem of
confined diffusion, where the degree of confinement is less-
ened but steric interactions remain important, remains an im-
portant and underexplored endeavor.

Another important effect in these confined systems that
has not received extensive theoretical attention is the effect
of specific and nonspecific interactions between the particles
and the confining environment. For example, enzymes can
bind to and chemically modify specific sites in tubulin when
diffusing through microtubules �5,6�. Also, microfluidic
channel walls can be functionalized to allow for the binding
of ligands in order to enable detection �11,12�. Furthermore,
electrostatic and van der Waals forces are nonspecific
particle-wall interactions that, when combined with the ef-
fects of surface roughness and charge inhomogeneity of the
walls, can lead to localized, transient binding of the particles
to the walls.

In this paper, we develop a simple model to study the
diffusion of finite size particles through narrow channels
with functionalized walls to which the particles can revers-
ibly bind. We consider the limit in which the channel width
is a few times larger than the particle dimensions, so that the
particles can diffuse past each other relatively easily. On the
other hand, the binding of particles on the channel walls can
cause a bottleneck, effectively narrowing the dimensions of
the channel for unbound particles. In Sec. II, we describe in
detail the setup of our basic model and �in conjunction with
the Appendix� the analytical procedure utilized to solve it.
We also describe the simulations used to test our theoretical
predictions. In Sec. III we describe the simplest case of dif-
fusion in the absence of reversible binding and make connec-
tions to both the standard results for bulk diffusion and to the
diffusion of particles through a channel of varying cross sec-
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tion �26–30�. We then consider the effects of reversible bind-
ing on particle transport through the channel. We discuss two
different cases, depending on the diameter of the channel
relative to the particle size. In Sec. IV we consider the case
where the channel diameter is small enough that it can be
completely blocked by bound particles. We analyze the flux
of particles through the channel and the densities of bound
and unbound particles within the channel, and show that our
simulation results are in good agreement with the analytical
predictions. We also show that corrections to mean-field
theory are necessary to account for the observed transport
properties. In Sec. V we consider the case where the channel
is too wide to be completely blocked by bound particles. We
show that the transport properties, which in this case are
adequately described by the mean-field theory, are signifi-
cantly modified relative to bulk diffusion and to the case
considered in Sec. IV. We conclude with a discussion of our
results and their implications for biological and technical ap-
plications.

II. MICROSCOPIC MODEL

Consider a channel of cross-sectional area at in which
particles of diameter � can both diffuse and bind to the chan-
nel walls. We partition the cross section into a number of
bins labeled by the index j, as illustrated schematically in
Fig. 1. The ratio 4at / ���2� determines the maximum number
N of particles that can fit within any given cross section of
the channel; in our model, N is the number of rows in the
channel. We label sites along the axis of the channel with an
integer i=1, . . . ,NL, where NL�L /�, L being the length of
the channel. The index j ranges from 1, . . . ,N. Due to the
steric interactions between particles, each site �i , j� can be
occupied by at most one particle. If a row in the model
corresponds to a region adjacent to the walls of the channel,
the particles can reversibly bind to the sites in this row. By
varying the ratio w /�, where w��at is the width of the chan-
nel, we can see that there are two distinct cases we need to
consider. When w /��1, every row j is an “exterior” row
that lies along the wall of the channel. In this case, which we
call the “no-hole case,” it is impossible for particles to dif-
fuse through cross sections of the channel which contain the
maximum number of bound particles. When w /��1, how-
ever, there are a certain number NH of “interior” rows where
particles cannot bind. In this case, which we call the “hole
case,” particles can always freely diffuse in the center of the
channel, even in regions where the maximum number of par-
ticles is bound to the channel walls.

For both of the scenarios described above, the system
evolves forward in time as a Markov process. That is, in a
discrete time step �t, each particle stochastically determines
which �if any� of its possible moves it will attempt using a
given state-independent probability for each move. Due to
steric interactions, however, the chosen move can occur only
if the particle attempts to move to an unoccupied site. If the
site is occupied, the particle does not move in that time step.
There are several possible moves that each particle can at-
tempt in a single time step. In general, the diffusion of par-
ticles in a channel can be “asymmetric” �2,18–21�, with dif-
ferent rates for hopping to the left and right. Also, the
diffusion constant can in principle vary with the distance
from the channel walls �5� �i.e., it can depend on the row
index j�. In this paper, however, we assume that the diffusive
landscape for the unbound particles in the channel is com-
pletely flat. In other words, we consider the symmetric dif-
fusion process exclusively. Furthermore, this assumption im-
plies a symmetry between the rows in the channel that
requires the left and right hopping rates to be independent of
the row index j. Thus an unbound particle at any site �i , j�
can hop to the site �i�1, j� with probability phop. In addition,
an unbound particle at �i , j� can hop to the site �i , j�� with
probability p̃hop�j , j��. In principle, the functional depen-
dence of p̃hop�j , j�� on the rows j,j� must encapsulate the
geometry of the channel. The determination of these rates for
arbitrary channel geometries could prove difficult, though
the aforementioned symmetry between the rows requires
p̃hop�j , j��= p̃hop�j� , j�. Fortunately, we shall see that a de-
tailed knowledge of these rates will not be necessary to find
the quantities of interest in this paper. Finally, if the index j
labels an exterior row, an unbound particle at �i , j� can bind
to that site with probability pon, while a bound particle can
unbind with probability poff.

To determine the particle profiles, we need to specify the
boundary conditions at either end of the channel. Throughout
this paper, we place the left end of the channel in contact
with a bath of particles in the bulk, which sets the number of
particles at i=1. At the right end of the channel, we place an
absorbing boundary �i.e., an infinitely dilute bath�, which
forces the particle profiles to vanish at i=NL.

Analytically, the time evolution of this system can be de-
scribed by the master equation:

���t + �t�	 − ���t�	 � ����t�	 = K���t�	 , �1�

where K is the evolution operator and ���t�	 is the “state
vector” of the system at time t:

���t�	 � 

�ui,j�=0,1



�bi,j�=0,1

P�s;t��s	 . �2�

Here, ui,j �bi,j� is the number of unbound �bound� particles at
site �i , j�, the “eigenstate” �s	���ui,j ,bi,j�	 enumerates one
specific configuration for all of the sites in the channel, and
P�s ; t� is the probability of finding the system in the eigen-
state �s	 at time t. The derivation of the evolution operator K
is given in the Appendix. We note that although the sum in
Eq. �2� includes physically unallowable states �specifically,
states with multiple particles occupying the same site�, we

......
j =1

i =1 δ i = NL

FIG. 1. Schematic illustration of the interior of the channel for a
typical particle distribution of bound particles �shaded sites�, un-
bound particles �cross-hatched sites�, and unoccupied �white� sites.
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can always force the probability of such states to vanish at all
times �see the Appendix�.

Using the evolution operator K, we can compute the time
evolution of the expectation value �i.e., the thermal average�
of any physical observable. In this paper, we will focus ex-
cusively on the variation of physical observables along the
channel axis, rather than their variation within a given cross
section of the channel. In particular, we are interested in the
total number of bound and unbound particles in the channel
as a function of the �dimensionless� distance i along the
channel axis, as well as the current, i.e., the total number of
particles per unit time passing through a given cross section
of the channel. These quantities can be related to the expec-
tation values of two operators, Cb�i , j� and Cu�i , j�: Cb�i , j�
gives 1 if the site �i , j� is occupied by a bound particle, and 0
otherwise, while Cu�i , j� gives 1 if the site �i , j� is occupied
by a unbound particle, and 0 otherwise. The evolution equa-
tions for these operators are derived in the Appendix.

In order to test the validity of our analytic results, we have
performed simulations of the lattice model described above.
All simulations were done on a rectangular lattice like the
one illustrated in Fig. 1, with N=5 and NL=100. For sim-
plicity, we set all of the lateral and longitudinal hopping
probabilities to be equal, p̃hop�j , j��= phop. For every time step
in the simulation, each particle in the channel is visited once,
in a random order. During each particle visit, it is first deter-
mined what �if any� move that particle will attempt, using the
rules and probabilities defined above. If that move is
allowed—that is, if it does not lead to any multiply occupied
sites in the lattice—then it is performed; if that move is not
allowed, then the attempt fails. This process is then repeated
for the next �randomly chosen� particle, until all of the par-
ticles have been visited once during the time step.

The boundary conditions in the simulation are set as fol-
lows: First, particles that leave either end of the channel do
not return. This alone sets the absorbing boundary condition
at the right end of the channel. To set the boundary condition
at the left end of the channel, we need an influx of particles
into the channel at that end. To provide this influx, we sto-
chastically attempt—with probability penter—to insert a
single additional particle into the left end of the channel at
the end of each time step. If it is determined that an attempt
should be made, then one of the N sites in the column i=1 is
chosen at random as the particle entry point. If that site is
empty then the new particle is added there; if the site is
occupied then the attempt fails. The value of the probability
penter sets the number of particles in the column i=1, which
must be measured in order to compare the simulation results
to the theoretical solutions.

III. DIFFUSION WITHOUT BINDING

Before considering the full problem of diffusion and bind-
ing of finite-size particles inside a channel, we first consider
the limit pon, poff→0, in which the diffusing particles cannot
reversibly bind to the channel walls. It is possible, however,
to have an initial, stationary distribution of irreversibly
bound particles in this limit.

We first consider an initial condition with no bound par-
ticles. In this case, the problem reduces to the diffusion of

finite-size particles with excluded volume interactions
through a channel with a uniform cross section. Here, the
only quantity of interest is the number of particles along the
channel, Nu�i , t��
 jCu�i , j�	. Using the results of the Ap-
pendix, it is straightforward to show that in the continuum
limit ��t ,�→0� Eq. �A10� yields the standard diffusion
equation for phantom �i.e., pointlike� particles with

�t	u�x,t� = D	u��x,t� , �3�

where x� i� is the continuous position along the channel and
D=lim�t,�→0 phop�

2 /�t is the diffusion constant. Here,
	u�x , t�� lim�→0 Nu�i , t� /� is the number of particles per unit
length at position x; that is, 	u�x , t�dx is the number of par-
ticles between x and x+dx.

The fact that excluded volume interactions do not alter the
simple diffusive behavior Eq. �3� of the particle profile is due
to the assumed symmetry of the particle diffusion constant
along the channel axis. Indeed, it is well known that ex-
cluded volume interactions do not affect the bulk diffusion
equation when the diffusion constant is independent of posi-
tion, even in the single-file limit �i.e., the symmetric exclu-
sion process� �31�. In the case of an asymmetric exclusion
process, where the hopping rate from i to i+1 is different
from the hopping rate from i to i−1, excluded volume inter-
actions do indeed affect the bulk diffusion equation �32�.
Furthermore, excluded volume interactions do play a role in
the behavior of individual particles in the channel �i.e., tracer
diffusion�, even for symmetric diffusion processes �31�. Fi-
nally, we note that the terms in Eq. �A10� for hopping within
a given column i—i.e., the terms �p̃hop�j , j��—cancel ex-
actly in Eq. �3�. This occurs for arbitrary values of the lateral
hopping rates p̃hop�j , j��, as long as these rates are symmetric,
p̃hop�j , j��= p̃hop�j� , j�. Thus the lateral diffusion of the par-
ticles within the channel has no effect on the particle profile
along the channel axis.

We can also use the limit pon, poff→0 to study the diffu-
sion of particles through a channel with a cross section that
varies on length scales much longer than the particle size. To
do so, we choose initial conditions such that Cb�i , j�	
=nb�i , j� is a fixed function that represents the varying cross
section of the channel. Then Eq. �A10� becomes

�Nu�i,t� = phop

�



j

�nu�i � 1, j� − nu�i, j�	�


 �1 − nb�i � 1, j���1 − nb�i, j�� . �4�

If we assume that the cross section varies on length scales
much longer than the channel radius, we can approximate the
distribution of particles within a given cross section of the
channel by a uniform distribution. This is known as the “lo-
cal equilibrium approximation” �28�. In this limit,

nu�i, j�	 =
Nu�i�

�N − Nb�i��
, �5�

where Nb�i��
 jnb�i , j�. Using Eq. �5�, Eq. �4� becomes
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�Nu�i,t� = phop

�
�Nu�i � 1�

A�i � 1�
−

Nu�i�
A�i� �Q�i � 1� , �6�

where the “cross-sectional area” A�i��N−Nb�i� is the num-
ber of particles that can occupy row i, and the “permeability”
Q�i�1��
 j�1−nb�i�1, j���1−nb�i , j��. Now, the assump-
tion that the cross section of the channel varies on length
scales much longer than the particle size � implies that the
function nb�i , j� is a slowly varying function of the row index
i. Therefore in the continuum limit nb�i�1, j�=nb�i , j�
+O���, and the permeability is given by

Q�i � 1� = 

j

�1 − nb�i, j��2 + O��� = 

j

�1 − nb�i, j�� + O���

= A�i� + O��� . �7�

The second equality follows from the fact that 1−nb�i , j�
=0,1 always. Then in the continuum limit Eq. �6� becomes

�	u�x,t�
�t

= − J��x,t� , �8�

where the prime indicates a derivative with respect to the
spatial variable x, and the current

J�x,t� = − D�A�x�
�

�x
�	u�x,t�

A�x� �� . �9�

Here, A�x�� lim�→0 A�i� /� is the continuum cross-sectional
area; that is, A�x�dx is the maximum number of particles that
can simultaneously occupy the region in the channel between
x and x+dx. We note that the O��� terms of the permeability
Eq. �7� vanish in the continuum limit �→0.

Equations �8� and �9� are known as the Fick-Jacobs equa-
tion, and have already been derived from the continuum dif-
fusion equation for a cylindrically symmetric channel
�26–30�. Our result generalizes the validity of the Fick-
Jacobs equation to any channel with cross-sectional area
A�x�. In particular, a channel with changing area due to a
change in the shape of the cross section will also exhibit
Fick-Jacobs behavior if the shape change occurs slowly
enough.

IV. NO-HOLE CASE

We now turn to the case in which particles can reversibly
bind to the walls of the channel. In this section, we consider
the “no-hole” case, in which the diffusion of unbound par-
ticles through a region of the channel can be completely
blocked by bound particles in that region. In the language of
the lattice model, particles can bind to every site �i , j� of the
channel. The state of this system can be described by two
functions, N��i�=
 jC��i , j�	, which give the expected num-
ber of bound ��=b� and unbound ��=u� particles at position
i along the channel axis. If we take the continuum limit, the
evolution equations �A6� and �A10� become, respectively,

�

�t
	b�x,t� = kon	u�x,t� − koff	b�x,t� , �10�

�

�t
	u�x,t� = − kon	u�x,t� + koff	b�x,t� − J��x,t� , �11�

where kon,off= pon,off /�t and 	��x , t�=lim�→0 N��i , t� /�. The

discrete longitudinal current J̄�i , t� is given by

J̄�i,t� �
phop

�t �Nu�i + 1� − Nu�i� + 

j

�Cu�i, j�Cb�i + 1, j�	

− Cu�i + 1, j�Cb�i, j�	�� . �12�

The continuous current in Eq. �11� is related to the discrete

current by J�x , t�=lim�→0 J̄�i , t�. Like the simple diffusion
case, the terms for hopping within a given column i cancel
for arbitrary values of the hopping rates p̃hop�j , j�� as long as
p̃hop�j , j��= p̃hop�j� , j�. The first two terms of Eq. �12� give the
lattice version of the current for phantom particles �i.e.,
Fick’s law�, while the final two terms give the correction due
to the fact that an unbound particle at �i , j� cannot hop to a
site �i�1, j� if it is occupied by a bound particle.

As mentioned in Sec. II, our model assumes that the dif-
fusive landscape for the unbound particles in the channel is
completely flat. In the no-hole case, this implies that any two
rows of the channel are interchangeable. As a result, the
steady-state expectation value of any operator that acts on a
single row j will be independent of j, as long as the boundary
conditions are independent of j. In more detail, consider the
probability P�s ; t� of a particular configuration s of bound
particles, occupied particles, and unoccupied sites in the
channel arising at time t. After interchanging two rows j and
j�, we arrive at a configuration s� of particles that can arise
with probability P�s� ; t� at time t. Symmetry between the
rows implies that P�s ; t�= P�s� ; t�. When this symmetry is
present,

C��i, j�	 = C��i�	 ,

C��i, j�C���i�, j�	 = C��i�C���i��	, �,�� = u,b . �13�

That is, averages involving operators of a single row j must
be independent of j, since those averages involve summing
over the probability distributions P�s ; t� described above.
Thus we obtain the same expressions for the expectation
value of any operator O�j�	 after interchanging j with j�,
implying Eq. �13� directly.

In order to solve Eq. �11�, we must postulate a form for
the two-point correlation functions appearing in Eq. �12�.
The simplest form for these correlation functions is given by
the mean-field approximation, in which the correlations be-
tween the two operators are neglected:

Cu�i, j�Cb�i�, j�	 = Cu�i�	Cb�i��	 . �14�

Then the mean-field current, in the continuum limit, becomes
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Jmf�x,t� =
D

�
�	u��x,t�	b�x,t� − 	u�x,t�	b��x,t�� − D	u��x,t� ,

�15�

where �� lim�→0 N /� is the maximum number of particles
�both bound and unbound� that can fit in the channel, per unit
length.

At steady state, �t	u�x , t�=�t	b�x , t�=0 and the solution to
Eq. �10� is

	u�x� = Kd	b�x� , �16�

where the disassociation constant Kd�koff /kon. Note that this
solution is independent of the mean-field approximation, Eq.
�14�. Using Eqs. �15� and �16�, and the boundary conditions
	u�L�=	b�L�=0, 	b�0��	b

�0�, the steady-state solution to Eq.
�11� is a simple linear profile:

	b
mf�x� = 	b

�0��1 −
x

L
� , �17�

and the steady-state current is

Jmf�x� = − D	u��x� =
	b

�0�KdD

L
� J0

mf. �18�

Figures 2 and 3 show the bound particle steady-state pro-

file 	b�x� and the steady-state current J0, respectively. In both
figures, we can see distinct deviations of the simulations
�points� from the predicted mean-field predictions �dashed
lines�. These deviations arise from the mean-field treatment
of correlation functions Cu�i , j�Cb�i� , j�	. In order to under-
stand the physical processes that cause these deviations, let
us first consider a quenched distribution of bound particles
where the unbound particle density has reached a steady
state. In this case, there will be an absence of correlations
between the bound and unbound particle distributions be-
cause the bound particle distribution is invariant in time.
However, if we now consider a single binding or unbinding
event, it is clear that there will be a transient change in the
surrounding unbound particle density as it relaxes toward a
new steady-state distribution. Since particles bind and un-
bind on finite time scales, every such event will lead to a
transient deviation in the correlation functions from their
mean-field value. This deviation will be particularly signifi-
cant if a binding �unbinding� event blocks �unblocks� the
entire cross section of the channel.

To quantify the deviations from mean-field theory, we
need to construct a dimensionless quantity that involves the
two-point correlation functions appearing in Eq. �12�. Al-
though the operators C��i , j� are dimensionless in their dis-
crete form, their expectation values in the continuum limit
	��x� have units of �length�−1. Therefore we characterize the
deviations of the expectation value Cu�i�1, j�Cb�i , j�	 from
its mean-field value with the dimensionless quantity

��i� �
Cu�i � 1, j�Cb�i, j�	 − Cu�i � 1, j�	Cb�i, j�	

Cu�i � 1, j�	Cb�i, j�	
.

�19�

Here, we have indicated the independence of the function �

from the row index j, which, as argued above, is known by
symmetry. Physically we anticipate that � will be a function
of the dimensionless density of the bound and unbound par-
ticles. Assuming the deviations are small, we may expand
��i� in powers of Nb /N and Nu /N and find, to lowest order,
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FIG. 2. Dimensionless bound particle density 	b�x� /� for the
no-hole case obtained from the simulations �points�, as compared to
the theoretical predictions both at the mean-field level �dashed
lines� and including the correlations �solid lines�. For all data
shown, N=5, pon=0.01, poff=0.001, and phop=1 /150; for the simu-
lations we also set p̃hop�j , j��= phop for all j , j�. The value of penter

for each simulation sets the left-end boundary condition 	b
�0� for the

theoretical curves. The values of penter and 	b
�0�, respectively, are

0.006, 0.60 �top, squares�; 0.02, 0.79 �top, triangles�; 0.01, 0.70
�bottom, circles�; and 0.5, 0.90 �bottom, diamonds�. For the theo-
retical predictions that include the effects of correlations, all of the
curves use the same fitting parameter, �=0.27.
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FIG. 3. Dimensionless steady-state current J0 /khop obtained
from the simulations �points� for various values of the left-end
boundary condition 	b

�0� /�, as compared to the theoretical predic-
tions both at the mean-field level �dashed lines� and including the
correlations �solid lines�. All parameter values are identical to those
used in Fig. 2.
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��i� = �1
Nb�i�

N
+ �2

Nu�i � 1�
N

. �20�

Here, �1 and �2 are parameters that encapsulate the degree of
deviation from mean-field behavior. Note that these param-
eters are not universal: in principle, they depend on the vari-
ous hopping rates.

Given Eq. �20�, the current can be written as J�x , t�
=Jmf�x , t�+Jcorr�x , t�, where Jmf�x , t� is given by Eq. �15� and

Jcorr�x,t� = −
D�1

�2 �	u�x,t��x	b
2�x,t� − 	b

2�x,t�	u��x,t��

+
D�2

�2 �	b�x,t��x	u
2�x,t� − 	u

2�x,t�	b��x,t�� .

�21�

The steady-state relation given by Eq. �16� still holds,
since �as noted above� it is independent of the mean-field
approximation. However, the steady-state bound particle pro-
file and current are now given by, respectively,

	b�x� � 	b
mf�x��1 − ��	b

�0�

�
�2 x

L
�2 −

x

L
�� �22�

and

J�x,t� = J0 =
DKd	b

�0�

L
�1 − ��	b

�0�

�
�2� , �23�

where ���−�1+Kd�2� /3. Here, we have only retained the
terms linear in � in Eq. �22�, in order to be consistent with
the expansion of the correlation functions Eq. �20�. Thus we
can see that our proposed form of the deviations from mean-
field behavior has only one fitting parameter, �.

Figures 2 and 3 show the resultant fits �solid lines� of Eqs.
�22� and �23�, respectively, to the simulation data. In order to
determine the value of the fitting parameter �, we fit Eq. �23�
to the current data shown in Fig. 3, and then use this value
for all of the particle profiles shown in Fig. 2. We can see
that this gives excellent fits for all of the profiles and for the
current measured by the simulations. Thus our postulate for
the form of the deviations from mean-field theory captures
the deviations seen in the simulations using only a single
parameter fit.

V. HOLE CASE

We now turn to the case in which the ratio of the channel
diameter to the particle size is large enough that particles can
always diffuse through a “hole” in the center of the channel,
even when all of the binding sites in a given cross section of
the channel are occupied by other bound particles. In our
lattice model, this corresponds to two distinct types of rows:
exterior rows, in which particles can diffuse and reversibly
bind, and interior rows, in which the particles can only dif-
fuse. Thus the state of the system can be described by three
operators: N��i�=
 jC��i , j�	� j for �=u ,b gives the ex-
pected number of bound ��=b� or unbound ��=u� particles
in the exterior rows of column i; Nh�i�=
 jCu�i , j�	�1−� j�

gives the expected number of unbound particles in the inte-
rior rows of column i. Here, � j =1 for the exterior rows and 0
for the interior rows.

For both the case of diffusion without reversible binding
and the no-hole case considered above, the lateral hopping
terms in the evolution equations of interest cancelled one
another exactly. This cancellation occurred for arbitrary val-
ues of the lateral hopping probabilities p̃hop�j , j��, subject
only to the symmetry requirement p̃hop�j , j��= p̃hop�j� , j�. As
we shall see below, however, the distinction between the
interior and exterior rows in the hole case causes some of the
lateral hopping terms—specifically, those terms correspond-
ing to the diffusion of particles from the interior rows to the
exterior rows �and vice versa�—to remain in the relevant
evolution equations. Consequently, we need to make a sim-
plifying assumption about these hopping probabilities. Since
the primary focus of this paper is the effects of steric inter-
actions on the diffusion of particles in confined geometries,
we need not consider cases where the number NH of interior
rows is large; the particle diffusion in such systems can be
adequately described by the standard diffusion equation for
phantom particles. Geometrically speaking, when NH is
small, all of the exterior rows will be approximately equidis-
tant from any given interior row. Therefore we will assume
that the probability of hopping from any exterior row to any
interior row �and vice versa� is given by p̃hop=const. This
assumption does not apply to the hopping probabilities from
one interior row to another interior row, or from one exterior
row to another exterior row: these rates remain arbitrary,
except for the usual symmetry constraint p̃hop�j , j��
= p̃hop�j� , j�. Thus we assume that the lateral hopping rates
are of the form

p̃hop�j, j�� = p̃hop�1 − � j,j�� + ��j, j��� j,j�, �24�

where ��j , j��=��j� , j� and � j,j�=0 if � j�� j�—that is, if
one row is an exterior row and the other is an interior row—
and 1 if � j =� j�.

In contrast to our discussion of the no-hole case, we can-
not exchange an interior row with an exterior row, although
we can interchange interior �and exterior� rows amongst
themselves. This latter symmetry ensures that the expectation
values take on only one value on all interior rows and an-
other on all exterior rows.

Cb�i, j�	 =
Nb�i�

N − NH
� j , �25�

Cu�i, j�	 =
Nu�i�

N − NH
� j +

Nh�i�
NH

�1 − � j� . �26�

If we take the continuum limit, the evolution for the bound
particle profile reduces to the same equation obtained in the
no-hole case Eq. �10�. We can use the evolution equation for
Cu�i , j�	, Eq. �A10�, to obtain the evolution equations for
both of the profiles Nu�i , t� and Nh�i , t�. Specifically, if we
use the assumption Eq. �24� for the lateral hopping rates, it is
straightforward to show the terms �� j,j� cancel one another
exactly in both evolution equations. Then it is straightfor-
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ward to show using Eqs. �25� and �26� that Eq. �A10� gives
the mean-field evolution equations

�

�t
	u�x,t� = − kon	u�x,t� + koff	b�x,t� − D̃��	u�x,t��H

− 	h�x,t��� − �H − 	b�x,t��� − Ju��x,t� , �27�

�

�t
	h�x,t� = D̃��	u�x,t��H − 	h�x,t��� − �H − 	b�x,t���

− Jh��x,t� , �28�

where 	��x , t�� lim�→0 N��i , t� /� for �=u ,h ,b, �H

=lim�→0 NH /�, D̃� lim�t,�→0 k̃hop�
2 / �N�t�, and the currents

Ju�x,t� � − D�	u��x,t� +
1

� − �H
�	u�x,t�	b��x,t�

− 	b�x,t�	u��x,t��� ,

Jh�x,t� � − D	h��x,t� . �29�

At steady state, we can see that Eq. �16� still holds, and
that the total longitudinal current Jtot�x��Ju�x�+Jh�x� is con-
stant:

Jtot�x� = − D�	u��x� + 	h��x�� = J0. �30�

This, along with the boundary condition 	��L�=0 �for �
=u ,b ,h�, implies that

	h�x� =
J0

D
�L − x� − Kd	b�x� . �31�

To solve for the steady-state current J0, we need an addi-
tional boundary condition relating the particle profiles in the
exterior and interior rows. Outside of the channel, there is no
net flux of particles in the direction perpendicular to the axis
of the channel. Since the current must be continuous across
the boundaries of the channel, the lateral current at the chan-
nel ends must vanish. Specifically, the rate of particles hop-
ping from the interior to the exterior rows must equal the rate
of particles hopping from the exterior to the interior rows at
the channel ends; that is, the term in brackets in Eq. �28�
must vanish there. This is trivially satisfied at the right end at
steady state, since all of the particle profiles vanish there. At
the left end, we must have

Kd	b�0��H = 	h�0��� − �H − 	b�0�� . �32�

Such an equation is not necessary in the no-hole case, since
in that case symmetry dictates that the lateral current van-
ishes everywhere. Using Eq. �32�, the steady-state current is
given by

J0 =
KdD

L
� � − 	b�0�

� − �H − 	b�0��	b�0� . �33�

The remaining ODE for the steady-state profiles can be
obtained by combining Eqs. �16�, �28�, and �31�:

Kd	b��x� = D̃��Kd	b�x��H − � J0

D
�L − x� − Kd	b�x��


�� − �H − 	b�x��� . �34�

This nonlinear ODE must be solved numerically using the
boundary conditions 	b�0�=	b

�0� and 	b�L�=0.
Figures 4 and 5 show the simulation results �points� for

several steady-state bound particle profiles 	b�x� and the
steady-state current J0, respectively, for the hole case. We
can see that the mean-field predictions �solid lines� for the
particle profiles and the current show excellent agreement
with the simulation results with no fitting parameters. Thus,
in contrast to the no-hole case, the effects of the correlations
that are ignored in the mean-field approximation are negli-
gible in the hole case. Specifically, we can see from original
evolution equation, Eq. �A10�, that the relevant two-point
correlation functions are of the form Cu�i , j�Cb�i� , j��	. In
the no-hole case, the correlation of these two operators can
be significant because the hopping of unbound particles can
be completely prevented by a large number of nearby bound
particles. This is never true in the hole case, however, be-
cause unbound particles can always diffuse through any re-
gion of the channel using the interior sites. Thus the correla-

0
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0.008

0.012

0.1 0.3 0.5 0.7

λb /Λ
(0)

J 0
/k
ho
p

FIG. 5. Dimensionless steady-state current J0 /khop obtained
from the simulations �points� for various values of the left-end
boundary condition 	b

�0� /�, as compared to the mean-field theoret-
ical predictions Eq. �33� �solid lines�. All parameter values are iden-
tical to those used in Fig. 4.
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FIG. 4. Dimensionless bound particle density 	b�x� /� for the
hole case obtained from the simulations �points�, as compared to the
mean-field theoretical prediction �solid lines�. For all data shown,
NH=1; the remaining parameter values are identical to those used in
Fig. 2. The values of penter, and the resultant values of 	b

�0�, are,
respectively, 0.004, 0.41 �circles�; 0.008, 0.53 �squares�; 0.02, 0.63
�diamonds�; and 0.5, 0.72 �triangles�.
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tions in the hole case are always negligible, and mean-field
theory provides an excellent description of this system.

VI. DISCUSSION AND CONCLUSION

Diffusive transport driven by concentration gradients can
occur under varying degrees of confinement, depending on
the relative size of the channel and the diffusing entity. In
one extreme, the particle size is much smaller than its sur-
rounding environment, and the transport behavior obeys the
standard Fick’s law. In the other extreme, the degree of con-
finement is severe, forcing the particles to diffuse in a single
file. In this paper, we have presented steps toward a system-
atic understanding of diffusion in systems with an interme-
diate degree of confinement, where steric interactions prevent
a large number of particles from diffusing freely past one
another. For symmetric diffusion through a channel with a
uniform cross section, we recovered the standard bulk diffu-
sion equation, which neglects steric effects. This is not sur-
prising: Although steric confinement does affect the single
particle dynamics of diffusing particles, it does not alter the
bulk diffusive behavior for a symmetric diffusion process,
even in the single-file limit �31�. We also examined diffusion
in a channel with a slowly varying cross section and were
able to derive a generalized form of the Fick-Jacobs equation
�26–30� for the diffusion of particles in a channel with a
varying cross-sectional area.

In such confined geometries, ubiquitous specific or non-
specific interactions between the diffusing objects and the
channel walls fundamentally alter the transport dynamics.
When both steric confinement and reversible binding to the
channel walls are present, there are two qualitatively differ-
ent cases that arise as the ratio of the channel width to the
particle size is varied. In the first �no-hole� case, the cross
section of the channel is wide enough to accommodate sev-
eral particles, but still narrow enough that the diffusion of
particles through a particular region of the channel can be
completely blocked by bound particles in that region. Our
simulation results for the bound particle profile indicate a
monotonic decrease from the proximal �left� to the distal
�right� end of the channel. The steady-state current increases
as the density of bound particles at the left end increases, but
begins to show a saturation behavior at high values, stem-
ming from the fact that the system spends more time in con-
figurations in which the channel is completely blocked. In-
terestingly, our simulation data for both the particle density
profile and the total current at steady state reveal significant
deviations from our mean-field predictions, especially at
higher overall particle densities. This is due to the fact that
binding events that completely block the channel, as well as
unbinding events that relieve this blockage, lead to signifi-
cant deviations in two-point density correlation functions
from their mean-field values. By taking these deviations into
account by means of a single dimensionless parameter, we

can reproduce both the particle density profiles and the
steady-state currents seen in all of our simulations. Being
able to characterize the particle profile and current across a
wide range of concentration gradients across the channel
with a single parameter is bound to be extremely useful in
predicting transport behavior in systems where a limited
amount of data is available.

For the second �hole� case, the channel is wide enough to
allow diffusion of particles through its center, even in regions
where there is a saturating coverage of bound particles on the
wall. Our simulation data in this case is in excellent agree-
ment with the predictions from mean-field theory. Since the
channel cannot be blocked under any circumstance, the two-
point correlations between the bound and unbound particles
are much weaker than in the no-hole case, making the devia-
tions of the particle profiles and current from their mean-field
values negligible. Both the particle profiles and the current
show qualitative differences from the no-hole case. At high
values of the left end particle density, the bound particle
profile shows a plateau phase near the left end before drop-
ping to zero at the right end. This indicates that as the con-
centration gradient across the channel is increased, the par-
ticles bind and effectively coat larger and larger regions of
the channel wall, starting at the left end. This is also reflected
in the steady-state current, which shows a remarkable bipha-
sic behavior as the left end particle density is increased. At
low densities, the current shows only modest increases as the
density is raised; at high densities, on the other hand, the
current rises sharply for increasing densities. This is due to
the aforementioned coating effect of the bound particles at
high densities, which forms a nonsticky layer along the chan-
nel walls. The diffusive behavior then becomes akin to that
of phantom diffusion in a nonsticky channel �albeit of a
smaller cross section�, resulting in strong increases in the
current at high concentrations. This kind of strong biphasic
behavior could have important implications in a variety of
biological systems, where it could be used as a regulatory or
sensory mechanism. In artificial systems, one could poten-
tially tune the system properties to generate a desired
strongly nonlinear dependence between the current and con-
centration gradient. Finally, it is important to note that one
could go from the no-hole to the hole case with a small
change in the channel diameter �on the order of a particle
size�. That such distinct transport regimes are separated by
such small changes in the geometry of the channel could also
have wide-ranging implications.

Promising avenues for further research include extending
our approach to include a bias in the diffusion �i.e., asym-
metric diffusion�, which could naturally occur as a result of
electric fields, hydrodynamic flows, or even biased motion of
molecular motors. Interactions between the particles them-
selves could also yield significant new regimes. We hope that
our work on these underexplored systems, where the inter-
mediate degree of confinement and the particle-wall interac-
tions lead to qualitatively different transport behaviors, in-
spires further theoretical, computational, and experimental
research on these very rich systems.
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APPENDIX: MASTER EQUATION

The evolution operator K defined in Eq. �1� can be ex-
pressed in terms of the creation and destruction operators
ab

��i , j� and au
��i , j� for bound and unbound particles, respec-

tively,

au
+�i, j��0;b	i,j = �1;b	i,j ,

au
−�i, j��1;b	i,j = �0;b	i,j ,

au
+�i, j��1;b	i,j = au

−�i, j��0;b	i,j = 0, �A1�

ab
+�i, j��u;0	i,j = �u;1	i,j ,

ab
−�i, j��u;1	i,j = �u;0	i,j ,

ab
+�i, j��u;1	i,j = ab

−�i, j��u;0	i,j = 0, �A2�

where �u ;b	i,j specifies a state of the site �i , j� with u un-
bound and b bound particles. It is important to note that these
operators can create the unphysical state �1,1	i,j, in which the
site �i , j� is occupied by both a bound and unbound particle.
Therefore we must take care to construct the evolution op-
erator K so that only transitions between physically allow-
able states can occur. This will ensure that, as long as the
initial condition of the system is a physically allowable state,
the system will never evolve into unphysical states.

We can construct number operators from the creation and
destruction operators, n��i , j�=a�

+�i , j�a�
−�i , j�, where �=u ,b.

In terms of these number operators, the operators Cb�i , j�
=nb�i , j��1−nu�i , j�� and Cu�i , j�=nu�i , j��1−nb�i , j��. We
also define the operator Ce�i , j�= �1−nb�i , j���1−nu�i , j��,
which gives 1 if the site �i , j� is empty and 0 otherwise.

Consider a single event, transforming the system from a
state �sold	 to a state �snew	, that is allowed to occur in a time
step �t �e.g., the hopping of an unbound particle from �i , j�
to �i+1, j��. Using Eqs. �1� and �2� and the orthogonality of
the state vectors, s �s�	=�s,s�,

���s;t� = 

�ñu

i,j�=0,1



�ñb

i,j�=0,1

P�s̃;t�s�K�s̃	 , �A3�

where for any function f�t�, �f�t�� f�t+�t�− f�t�. For every
possible transition �sold	→ �snew	, there must be two terms in
K. Both of these terms should be proportional to P�sold ; t�,
since the frequency of the transition �sold	→ �snew	 clearly de-
pends on the probability of finding the system in the initial
state �sold	. The first term accounts for the increase in
P�snew ; t� due to this transition. This term should give a posi-
tive contribution to the right-hand side �rhs� of Eq. �A3� for
s=snew. Then it is clear from Eq. �A3� that this term should
be positive and contain creation and destruction operators
that transform �sold	→ �snew	. The second term in K for this
transition accounts for the decrease in P�sold ; t� due to the
transition �sold	→ �snew	. This term should give a negative
contribution to the rhs of Eq. �A3� for s=sold. We can see
from Eq. �A3� that this term should be negative and contain
only number operators, so that the nonzero term in the sum
on the rhs of Eq. �A3� is proportional to P�sold ; t�. Using
these rules, it is straightforward to write down the evolution
operator K for the system described in Sec. II. Writing K
=
i,jKi,j,

Ki,j = „pon�ab
+�i, j�au

−�i, j� − nu�i, j��1 − nb�i, j���

+ poff�ab
−�i, j�au

+�i, j� − �1 − nu�i, j��nb�i, j��…� j

+ 

j��j

p̃hop�j, j���1 − nb�i, j���1 − nb�i, j���


�au
−�i, j��au

+�i, j� − nu�i, j���1 − nu�i, j��� + phop




�

�1 − nb�i, j���1 − nb�i � 1, j���au
−�i � 1, j�au

+�i, j�

− nu�i � 1, j��1 − nu�i, j��� , �A4�

where � j =1 if binding can occur in the jth row, and 0 if
binding cannot occur. As required, this evolution operator
satisfies the constraint that only physically allowable states
evolve in time.

We can now use the master equation, Eq. �1�, to compute
the evolution equations for any given operator. From Eq. �2�,
it is clear that the normalization of the state vector ���t�	 is
given by 1���t�	=1, where �1 	�
s�s	. Therefore the expec-
tation value of any operator Oij is Oij	�1�Oij���t�	. Using
Eq. �1�, the evolution equation for Oij	 is given by

�Oij	 = 1 �OijK���t�	 . �A5�

To compute the rhs of this equation, we note that if Ki�j�
contains no operators that act on the site �i , j�, then
1�OijKi�j����t�	=0. Using this fact, it is straightforward to
derive the desired evolution equations for the operators of
interest. In particular, the evolution equations for Cb�i , j� and
Ce�i , j� are, respectively,

�Cb�i, j�	 = �ponCu�i, j�	 − poffCb�i, j�	�� j , �A6�

�Ce�i, j�	 + �Cu�i, j�	 + �Cb�i, j�	 = 0. �A7�

Since every site must either contain a single particle �bound
or unbound�, or be unoccupied, and Cb�i , j�	=0 if � j =0, the
solution to Eq. �A7� is simple:
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Ce�i, j�	 = 1 − Cu�i, j�	 − Cb�i, j�	� j . �A8�

Indeed, for any operator Oi�j�,

Oi�j�Ce�i, j�	 = Oi�j��1 − Cu�i, j� − Cb�i, j�� j�	 . �A9�

Using this result, it is straightforward to show that the final
desired evolution equation, for the operator Cu�i , j�, is given
by

�Cu�i, j�	 = − �ponCu�i, j�	 − poffCb�i, j�	�� j + 

j��j

p̃hop�j, j��


�Cu�i, j��	 − Cu�i, j�	 − Cu�i, j��Cb�i, j�	� j

+ Cu�i, j�Cb�i, j��	� j�� + phop

�

�Cu�i � 1, j�	

− Cu�i, j�	 − Cu�i � 1, j�Cb�i, j�	� j

+ Cu�i, j�Cb�i � 1, j�	� j� . �A10�
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